Nikolai Kulagin
pr. Leninskiy 31, 119071 Moscow, Russia
Frumkin Institute of Phys. Chemistry and Electrochemistry of RAS
Publications:
Kulagin N. E., Lerman L. M., Trifonov K. N.
Twin Heteroclinic Connections of Reversible Systems
2024, vol. 29, no. 1, pp. 40-64
Abstract
We examine smooth four-dimensional vector fields reversible under some smooth
involution $L$ that has a smooth two-dimensional submanifold of fixed points. Our main interest
here is in the orbit structure of such a system near two types of heteroclinic connections
involving saddle-foci and heteroclinic orbits connecting them. In both cases we found families
of symmetric periodic orbits, multi-round heteroclinic connections and countable families of
homoclinic orbits of saddle-foci. All this suggests that the orbit structure near such connections
is very complicated. A non-variational version of the stationary Swift – Hohenberg equation is
considered, as an example, where such structure has been found numerically.
|